

Máster Universitario en Química Orgánica

APLICACIONES SINTÉTICAS DE LOS COMPUESTOS ORGANOMETÁLICOS

Guía Docente

Curso académico 2014-15

1. Datos descriptivos de la materia

Carácter: Optativa

Convocatoria: 1er cuatrimestre

Créditos: 3 ECTS (14h clases presenciales + 8h seminario + 2h tutorías)

Profesorado:

Carlos Saá Rodríguez (Coordinador)

Catedrático de Universidad Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) carlos.saa@usc.es

Susana López Estévez

Profesora Titular de Universidad Departamento de Química Orgánica Facultad de Química susana.lopez.estevez@usc.es

Dolores Pérez Meirás

Profesora Titular de Universidad Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) dolores.perez@usc.es

Idioma en que es impartida: Castellano, gallego e inglés

2. Situación, significado e importancia de la materia en el ámbito de la titulación.

2.1. Módulo al que pertenece la materia en el Plan de Estudios. Materias con las que se relaciona

Módulo 2 (M2) – Especialización. La asignatura se relaciona fundamentalmente con la asignatura "Síntesis orgánica avanzada y mecanismos de reacción" del modulo M1. Estas asignaturas son básicas para conocer las herramientas sintéticas más avanzadas y actuales de la Química Orgánica.

2.2. Papel que juega este curso en ese bloque formativo y en el conjunto del Plan de Estudios

Esta asignatura es clave en el Módulo 2 (M2) porque estudia la estructura y la reactividad de los complejos organometálicos y sus aplicaciones catalíticas en síntesis química. Asimismo, esta materia contiene conceptos fundamentales para comprender otras asignaturas del Master como Química Orgánica Biológica y Materiales Orgánicos y Nanotecnología.

2.3. Conocimientos previos (recomendados/obligatorios) que los estudiantes han de poseer para cursar la asignatura

Es obligatorio haber cursado con anterioridad las asignaturas del grado de Química o Farmacia.

3. Objetivos del aprendizaje y competencias a alcanzar por el estudiante con la asignatura

3.1. Objetivos del aprendizaje

- Predecir de forma razonada la estabilidad y la reactividad de los complejos organometálicos en función de sus características electrónicas.
- Proponer mecanismos razonables, fundamentados en las reacciones organometálicas básicas, para las reacciones catalizadas por complejos organometálicos.
- Utilizar razonamientos basados en efectos estéricos y electrónicos para predecir como los cambios en los reactivos, metales y ligandos afectan al curso de las reacciones.
- Plantear rutas sintéticas actuales con etapas clave basadas en complejos organometálicos.
- Leer e interpretar críticamente los trabajos científicos actuales, con comprensión y explicación de su contenido y significancia.

3.2. Competencias básicas y generales

- CG1 Trabajar en equipo con eficiencia en su labor profesional y/o investigadora
- CG3 Acceder a la información necesaria (bases de datos, artículos científicos, etc.) y tener suficiente criterio para su interpretación y empleo
- CG5 Estar bien adaptados para seguir futuros estudios de doctorado en áreas multidisciplinares
- CG6 Estar bien adaptados para desarrollar un trabajo en empresas tecnológicas relacionadas con la Química Orgánica
- CG8 Capacidad para aplicar el método científico y los principios de la Química Orgánica para formular y resolver problemas complejos

3.3. Competencias específicas

- CT1 Manejar las herramientas informáticas y las tecnologías de la información y la comunicación, así como el acceso a bases de datos en línea
- CT2 Desarrollar la capacidad de comunicación científico-técnica en castellano y en inglés,

- tanto de forma oral como escrita, utilizando los medios audiovisuales más habituales
- CT4 Aplicar los conceptos, principios, teorías o modelos relacionados con la Química Orgánica a entornos nuevos o poco conocidos, dentro de contextos multidisciplinares
- CT7 Desarrollar sensibilidad y responsabilidad sobre temas energéticos, medioambientales y éticos

3.4. Competencias transversales

- CE1 Conocer los métodos de síntesis orgánica más relevantes, incluyendo los fundamentos de los procesos estereoselectivos en química orgánica, y ser capaz de diseñar rutas de síntesis de moléculas orgánicas complejas
- CE4 Conocer y comprender los mecanismos de reacción comúnmente aceptados en Química Orgánica y los métodos disponibles para su determinación
- CE7 Conocer el impacto de la Química Orgánica en la industria, medio ambiente, farmacia, salud, agroalimentación y energías renovables

4. Contenidos del curso

4.1. Epígrafes del curso:

- **Tema 1**. Caraterísticas generales de los complejos organometálicos
- Tema 2. Mecanismos de las reacciones organometálicas
- Tema 3. Reacciones de acoplamiento cruzado. Reacción de Heck
- Tema 4. Reacciones de carbonilación y descarbonilación
- Tema 5. Complejos metal-carbeno
- Tema 6. Complejos metal-alquino
- **Tema 7.** Complejos metal alqueno, metal-dieno y dienilo. Reacciones vía complejos η 3-alilo. Complejos metal-areno
- Tema 8. Reacciones de activación C-H

4.2. Bibliografía recomendada

4.2.1. Básica (manuales de referencia)

- Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009.
- Bates, R. Organic Synthesis using Transition Metals, Wiley, 2012.

4.2.2. Complementaria

- Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd Ed.; Beller, M.; Bolm, C., Eds., Wiley-VCH, 2004.
- *Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed.;* de Meijere, A.; Diederich, F., Eds., Wiley-VCH, 2004.
- R. H. Crabtree, E. Peris Fajarnés Química organometálica de los metales de transición, Ed. Publicacions de la Universitat Jaume I, 1997.

TEMA 1. Caraterísticas generales de los complejos organometálicos

1. Sentido del tema (Introducción)

En este tema se analizarán las características generales de los complejos organometálicos: tipos de ligandos, número de electrones, estado de oxidación, configuración dn, etc. También se analizarán los principales aspectos estructurales de los complejos.

2. Epígrafes del tema

1) Formalismos: a) estado de oxidación, b) configuración electrónica, número de coordinación, y regla de los 18 e-, c) clases de ligandos. 2) Consideraciones sobre el enlace. 3) Consideraciones estructurales.

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009.

Capítulo 1, páginas 1-12

4. Actividades a desarrollar

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 2. Mecanismos de las reacciones organometálicas

1. Sentido del tema (Introducción)

En este tema se analizarán los mecanismos de las reacciones organometálicas básicas. Se comentarán las series de reacciones habituales en los ciclos catalíticos más importantes.

2. Epígrafes del tema.

1) Mecanismo ascociativo y disociativo. 2) Adición oxidante y eliminación reductora. 3) Inserciones y eliminaciones. 4) Ataques nucleofílicos y electrofílicos a ligandos coordinados al metal. 5) Transmetalación.

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009.

Capítulo 2, páginas 13-38

4. Actividades a desarrollar

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 3. Reacciones de acoplamiento cruzado. Reacción de Heck

1. Sentido del tema (Introducción)

En este tema se analizarán las principales reacciones de acoplamiento cruzado entre especies organometálicas Csp3, Csp2 y Csp catalizadas por especies organometálicas. Se analizará la reacción de Heck como una reacción fundamental en la formación de olefinas en condiciones catalíticas.

2. Epígrafes del tema

1) Reacciones de acoplamiento cruzado de especies organometálicas C-sp3. 2) Reacciones de acoplamiento cruzado de especies organometálicas C-sp2. 3) Reacciones de acoplamiento cruzado de especies organometálicas C-sp. 4) Reacción de Heck.

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009.

Capítulo 4, páginas 65-115.

4. Actividades a desarrollar.

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 4. Reacciones de carbonilación y descarbonilación

1. Sentido del tema (Introducción)

Se analizarán las reacciones de carbonilación y descarbonilación catalizadas por metales y su papel relevante en reacciones de interés industrial.

2. Epígrafes del tema

1) Reactividad general de carbonilos metálicos. 2) Reacciones de acoplamiento carbonilante catalizadas por paladio y de carbonilación de alquenos y alquinos. 3) Carbonilaciones de interés industrial: proceso Monsanto; hidroformilación (proceso oxo). 4) Reacciones de descarbonilación.

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009

Capítulo 5, páginas 129-146

4. Actividades a desarrollar.

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 5. Complejos metal-carbeno

1. Sentido del tema (Introducción)

Se analizarán la reactividad nucleofílica y electrofílica de los complejos metal-carbeno. Se prestará especial atención a la reacción "nobel" de metátesis de alquenos.

2. Epígrafes del tema.

1) Carbenos electrófilos (carbenos de Fischer): preparación y reactividad. 2) Carbenos nucleófilos (carbenos de Schrock). 3) Metátesis de alquenos: mecanismo general, ROMP, y RCM.

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009

Capítulo 6, páginas 151-191.

4. Actividades a desarrollar.

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 6. Complejos metal-alquino

1. Sentido del tema (Introducción)

Se analizará la naturaleza y la amplia reactividad de los complejos metálicos con ligandos alquino.

2. Epígrafes del tema

1) Aspectos estructurales. 2) Complejos metal-alquino estables: complejos de Co como grupos protectores de alquinos y reacción de Nicholas. 3) Reacción de Pauson-Khand. 4) Reacciones de cicloadición de alquinos.

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009

Capítulo 8, páginas 237-261.

4. Actividades a desarrollar

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 7. Complejos metal alqueno, metal-dieno y dienilo. Reacciones vía complejos η 3-alilo. Complejos metal-areno

1. Sentido del tema (Introducción)

Se analizará la naturaleza y la reactividad de los complejos metálicos con alquenos, dienos y dienilos, complejos alílicos y complejos metal-areno.

2. Epígrafes del tema.

1) Complejos metal-alqueno de paladio y de hierro. 2) Complejos metal-dieno: estabilización de cationes alílicos y adición de nucleófilos. 3) Complexos η 5-dienilo: aplicacions sintéticas. 6) Reacciones de sustratos alílicos catalizadas por Pd, Ni y otros metales. 7) Complejos metal-areno de los grupos 6 y 8 (Cr, Fe, Ru).

3. Bibliografía

Hegedus, L. S.; Söderberg, B. C. G. *Transition Metals in the Synthesis of Complex Organic Molecules* 3rd Ed., University Science Books, 2009

Capítulos 7, 9 y 10, páginas 199-229, 261-298 y 307-335.

4. Actividades a desarrollar

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

TEMA 8. Reacciones de activación C-H

1. Sentido del tema (Introducción)

Se analizarán las diferentes variantes de funcionalización catalítica (activación C-H) y sus aplicaciones en síntesis química.

2. Epígrafes del tema.

1) Introducción. 2) Activación Csp3-H en alcanos: deshidrogenación, carbonilación, borilación, oxidación y aminación. 3) Activación Csp2-H: borilación, carbonilación y ciclometalación. 4) Activación Csp2-H catalizada por Pd: oxigenación, arilación, halogenación, fluoración, carboxilación, reacción de Heck oxidante. 5) Activación C-H alílica. 6) Inserciones metal-carbeno

3. Bibliografía

Artículos recientes de bibliografía.

4. Actividades a desarrollar

Resolver los ejercicios indicados por el profesor y entregarlos en la fecha indicada en el *calendario* de actividades de la materia. En el seminario correspondiente a este tema, los alumnos resolverán estos ejercicios en la pizarra.

5. - Indicaciones metodológicas y atribución de carga ECTS

5.1. Atribución de créditos ECTS

TRABAJO PRESENCIAL EN EL AULA	HORAS	TRABAJO PERSONAL DEL ALUMNO	HORAS
Clases expositivas en grupo grande	14	Estudio autónomo individual o en grupo	15
Clases interactivas en grupo reducido (Seminarios)	8	Resolución de ejercicios, u otros trabajos propuestos	31
Tutorías en grupo muy reducido	2	Elaboración de ejercicios propuestos	5
Total horas trabajo presencial en el aula o en el laboratorio	24	Total horas trabajo personal del alumno	51

5.2. Actividades formativas en el aula con presencia del profesor

- A) Clases presenciales teóricas. Clases expositivas (utilización de pizarra, ordenador, cañón), complementadas con las herramientas propias de la docencia virtual.
- B) Seminarios realizados con profesorado propio del Máster, o con profesionales invitados de la empresa, la administración o de otras universidades. Sesiones interactivas relacionadas con las distintas materias con debates e intercambio de opiniones con los alumnos.
- C) Resolución de ejercicios prácticos (problemas, cuestiones tipo test, interpretación y procesamiento de la información, evaluación de publicaciones científicas, etc.).
- D) Tutorías individuales o en grupo reducido.
- E) Utilización de programas informáticos especializados e Internet. Soporte docente *on-line* (Campus Virtual).
- F) Estudio personal basado en las diferentes fuentes de información.
- G) Realización de las diferentes pruebas para la verificación de la obtención tanto de conocimientos teóricos como prácticos y la adquisición de habilidades y actitudes.

5.3. Calendario de actividades

Noviembre/ Diciembre 2014	Lunes	Martes	Miércoles	Jueves	Viernes
12-14 h	17	18	19	20	21
16-18 h	24 (12-14h)	25	26	27	28
16-18 h	1	2			

Clases expositivas
Seminarios
Tutorías
Festivos

6. Indicaciones sobre la evaluación

6.1. Procedimiento de evaluación

La evaluación de esta materia se hará mediante evaluación continua y la realización de un examen final.

La evaluación continua tendrá un peso mínimo del 30% y un máximo del 50% en la calificación de la asignatura y constará de cuatro componentes: a) resolución de problemas y casos prácticos, b) resolución de trabajos e informes escritos, c) exposición oral (trabajos, informes, problemas y casos prácticos), d) evaluación continua del alumno mediante preguntas y cuestiones orales durante el curso.